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Mild traumatic brain injury (mTBI) that results in hospital 
treatment is estimated to occur in 300–400/100,000 individ-
uals per year (Voss et al., 2015). Approximately 80% of these 
individuals are expected to make a full cognitive recovery 
within 3 months of injury (Carroll, Cassidy et al., 2004). 
The cognitive domains most commonly affected by mTBI 
are speed of processing, attention, memory and executive 
function (Carroll et al., 2014). During the normal recovery 
period, and for those who do not recover fully in the typi-
cal timeframe (Carroll et al., 2014), cognitive impairment 
significantly contributes to disability and poor psychosocial 
outcome after injury (Benedictus et al., 2010; Caplain et al., 
2017; Ponsford et al., 2003).

Microhaemorrhagic lesions are one of the most com-
monly identified neuropathological consequences of mTBI 
(van der Horn et al., 2018) and can be identified in vivo 
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Abstract
Cerebral microhaemorrhage is a commonly identified neuropathological consequence of mild traumatic brain injury 
(mTBI) and can be identified in vivo using susceptibility weighted imaging (SWI). This study aimed to determine whether 
SWI-detected microhaemorrhages are more common in individuals after a single, first-ever, mTBI event relative to trauma 
controls (TC) and to investigate whether a linear relationship exists between microhaemorrhage numbers and cognition or 
symptom reporting in the post-acute period after injury, independently of age, psychological status and premorbid level of 
functioning. Microhaemorrhagic lesions were identified by expert clinical examination of SWI for 78 premorbidly healthy 
adult participants who were admitted to hospital after a traumatic injury and had suffered a first-ever mTBI (n = 47) or no 
head strike (n = 31). Participants underwent objective cognitive examination of processing speed, attention, memory, and 
executive function as well as self-reported post-concussion symptomatology. Bootstrapping analyses were used as data 
were not normally distributed. Analyses revealed that the mTBI group had significantly more microhaemorrhages than 
the TC group (Cohen’s d = 0.559). These lesions were only evident in 28% of individuals. The mTBI participants dem-
onstrated a significant linear association between number of microhaemorrhages and processing speed, independently of 
age, psychological status, or premorbid level of functioning. This study shows that a single mTBI causes cerebral micro-
haemorrhages to occur in a minority of premorbidly healthy individuals. Greater microhaemorrhage count is independently 
associated with slower processing speed, but not symptom reporting, during the post-acute injury period.
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using susceptibility weighted imaging (SWI) (Huang et al., 
2015). It has broadly been accepted that groups of individu-
als with mTBI have more SWI-related microhaemorrhagic 
lesions than orthopaedic or healthy control participants 
(Tate et al., 2017; Trifan et al., 2017; van der Horn et al., 
2018). The clinical consequences of microhaemorrhagic 
lesions continue to be debated, however. Some studies have 
found no significant relationship between the presence of 
SWI-identified microhaemorrhagic lesions and cognitive 
function or symptom reporting (Einarsen et al., 2019; Tate 
et al., 2017; van der Horn et al., 2018). Others have reported 
a relationship between the presence of microhaemorrhages 
and adverse neurological and functional outcome (de Haan 
et al., 2017; Park et al., 2009), cognitive outcome (Huang 
et al., 2015; Irimia et al., 2022; Studerus-Germann et al., 
2018), post-concussion symptoms (Studerus-Germann et 
al., 2018) and presence of recent onset depression (Wang 
et al., 2014).

Problematically, all these studies varied substantially 
with respect to the MRI scanner magnetic field strength 
and within study scanner consistency, comprehensiveness 
of outcome evaluation, time since injury, extent of control 
group matching, inclusion of elderly (> 60 years), pres-
ence of psychiatric history and history of previous mTBIs. 
Further, no previous study controlled for age or premorbid 
level of cognitive function. All of these variables have been 
shown to significantly impact microhaemorrhagic lesion 
presence and/or lesion detection and/or cognition and symp-
tom reporting (Carroll, Cassidy et al., 2004; Haller et al., 
2018; Lange et al., 2011; Massey et al., 2015; Ponsford, 
2013; Robles et al., 2022; Salthouse, 2009; Stern, 2002; 
Stulemeijer et al., 2008; Terry et al., 2019; Vernooij et al., 
2008). Consequently, the specificity of previous findings 
with respect to the presence of mTBI-related microhaemor-
rhagic lesions and the impact of these lesions on cognition 
and/or symptom reporting remains open to question.

One additional limitation of all prior studies particularly 
undermines the validity of past conclusions. No previous 
study that has examined the relationship between micro-
haemorrhagic lesions and outcome, (Einarsen et al., 2019; 
Huang et al., 2015; Studerus-Germann et al., 2018; Tate 
et al., 2017; van der Horn et al., 2018) has investigated or 
controlled for the potential impact of psychological factors 
on this relationship. It has been well established that psy-
chological status significantly affects both symptom report-
ing and cognitive performance after mTBI (Cassidy et al., 
2014; Lange et al., 2011; Snell et al., 2015). Consequently, 
the absence of methodological or statistical controls for the 
substantial influence of psychological factors on outcome in 
previous research is highly problematic as it prevents valid 
inferential conclusions being drawn from these studies.

The present prospective study aimed to investigate post-
acute (6–12 weeks after injury) outcome in a premorbidly 
healthy group of adults, less than 60 years of age, who had 
suffered a first-ever mTBI, and compare it to a premorbidly 
healthy group of trauma control adults, who were well-
matched for age, sex, premorbid level of functioning, injury 
cause, involvement in litigation and current psychologi-
cal status. It was hypothesised that the presence of micro-
haemorrhagic lesions in the mTBI group would be linearly 
associated with cognitive function and post-concussion 
symptomatology after controlling for age, psychological 
status and premorbid level of function.

Method

Participants

Participants comprised individuals, excluding professional 
athletes and war veterans, who had suffered any traumatic 
injury (systemic and/or head) between September 2015 
and December 2019, and been consecutively admitted to 
The Alfred hospital or Royal Melbourne Hospital, Mel-
bourne, Australia, in the preceding 6–12 weeks. Detailed 
description of the recruitment process and the recruitment 
decision tree have been reported previously (Anderson & 
Fitzgerald, 2020; Anderson & Jordan, 2020). All admitted 
trauma patients were approached for recruitment consider-
ation. The mTBI group comprised 47 premorbidly healthy 
adults (36 male) aged 18–60 years, whose traumatic injury 
included a head strike and fulfilled criteria for a mTBI event 
as defined by the World Health Organisation criteria (Car-
roll, Cassidy, Holm et al., 2004), which can be briefly sum-
marised as (i) 1 or more of confusion or disorientation, loss 
of consciousness for 30 min or less, post-traumatic amnesia 
less than 24 h; (ii) Glasgow Coma Scale score of 13–15 after 
30 min. Excluded individuals were those with: any previous 
neurological history, including documented mTBI; any his-
tory of heavy alcohol consumption, intravenous or regular 
Class A drug use; history of any past or current significant 
psychiatric disorder; current TBI as a result of physical 
assault/attack; lack of conversational English fluency. The 
TC participants comprised 31 premorbidly healthy adults 
(27 male) aged 18–60 years, whose traumatic injury had not 
included a head strike and who did not report any symp-
toms of mTBI; this group had the same exclusion criteria 
as the mTBI group. No ethnic group differences existed. All 
participants provided informed consent and the project was 
approved by The Alfred hospital and Royal Melbourne Hos-
pital Human Research Ethics Committees.
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Measures

Premorbid cognitive functioning

The Wechsler Test of Adult Reading (WTAR) (Wechsler, 
2001) is a word reading task, from which accurate estimates 
of premorbid intellectual functioning (PreIQ) can be derived 
in individuals with mTBI (Steward et al., 2017).

Processing speed

The Symbol Digit Modality Test – (SDMT) is a measure of 
processing speed that is sensitive to cognitive impairment 
after mTBI (McCauley et al., 2014). It requires individuals 
to provide the correct number that corresponds to a given 
symbol, according to a reference key at the top of the page. 
On this version of the SDMT, the final score was number of 
correct items within 2 min.

Attention

The Digit Span subtest from the Wechsler Adult Intelligence 
Scale – 4th Edition (Wechsler, 2008) is a valid, reliable and 
widely-used measure of attention that is recommended for 
use in TBI research (Wilde et al., 2010). Digit Span Total 
(DSp) is a global measure of attention; raw scores rather 
than aged-scaled scores were used to enable comparative 
analyses with other cognitive measures.

Memory

The Rey Auditory Verbal Learning Test (RAVLT) (Schmidt, 
1996) is a reliable and valid measure of verbal memory 
(Helmes, 2000). The total number of items learned on the 
five list learning trials (Total) assessed acquisition; it has 
demonstrated sensitivity to TBI samples (Schoenberg et al., 
2006).

Executive function

The difference between Trail Making Tests A and B was 
used as a measure of mental flexibility (Lezak, 1995). This 
measure has been shown to be sensitive to executive dys-
function after mTBI (Spreen & Strauss, 1998).

Post-concussion symptoms

The Rivermead Post Concussion Symptoms Questionnaire 
(RPQ) is a widely used measure of post-concussion symp-
tomatology. It assesses physical (10 items), psychological 
(3 items) and cognitive (3 items) symptoms experienced 
during the past 24 h, with each item on a 5-point likert scale 

(0–4) (King et al., 1995). It has been shown to be elevated 
after mTBI and other conditions (Cassidy et al., 2014; 
Ettenhofer & Barry, 2012; Laborey et al., 2014).

Psychological distress

Two widely used, valid and reliable questionnaires of psy-
chological distress were used: The Inventory of Depressive 
Symptomatology (IDS) measures severity of overall depres-
sion (Rush et al., 1996). The Beck Anxiety Inventory (BAI) 
measures anxiety symptomatology (Beck & Steer, 1993). 
To reduce the number of variables and increase the power of 
calculations, a Psychological Distress Index was calculated 
by summing the raw score of the IDS and BAI.

Assessment of performance validity

The Digit Span (DSp) subtest from the Wechsler Adult 
Intelligence Scale, 4th Edition (WAIS-IV) (Wechsler, 2008) 
was used as a measure of effort (Iverson & Tulsky, 2003). 
Participants were identified as having problematic effort on 
testing if they failed on the subscales of Age Scaled Score 
Total (Fail = 5 or less) and Longest Digits Forward (Fail = 4 
or less) (Iverson & Tulsky, 2003), which have been shown 
to have a likelihood ratio that successfully identifies poor 
effort (Babikian et al., 2006; Schutte & Axelrod, 2013).

Procedure

Following recruitment on the ward within 1–4 days of 
injury, participants returned to the hospital for neuropsycho-
logical examination and MRI scans, conducted on the same 
day, 6–10 weeks after injury. Neuropsychological measures 
were conducted in the following sequence for all partici-
pants: SDMT, WTAR, RAVLT, DSp, TMT, RPQ, IDS, BAI.

SWI data acquisition

Neuroimaging was performed using a 3T MR scanner 
(PRISMA, Siemens Healthcare) with a 32-channel head coil. 
The SWI sequence was acquired as part of a longer clinical 
research protocol in the transverse orientation (TE = 20ms, 
TR = 29ms, flip angle = 15°, matrix = 202 × 384, FOV 
157 × 210; voxel size 0.55 × 0.55 × 1.5mm3).

Lesion identification

Number of SWI-related microhaemorrhagic lesions on each 
scan was determined concurrently by two raters: a neurora-
diologist and a neurosurgical fellow. Each rater had more 
than 10 years of clinical practice reviewing MRI scans 
acquired for traumatic brain injury; both raters were blinded 
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of microhaemorrhages present in cases that had more than 
20 microhaemorrhages. Consequently, to conservatively 
examine group differences, cases that were found to have 
more than 20 microhaemorrhages were coded as having 20 
microhaemorrhages, rather than making estimates of larger 
microhaemorrhage numbers. A similar approach has been 
adopted by others when assessing numbers of microhaem-
orrhagic lesions using SWI images (McKinney et al., 2012).

Statistical analysis

Statistical analysis was conducted using the Statistical Pro-
gram for the Social Sciences (SPSS Version 26.0; SPSS, 
Inc., Chicago, IL). Data were screened for relevant assump-
tions for all inferential statistics employed in the analyses. 
The distribution of microhaemorrhage count was severely 
skewed. Consequently, consistent with recommended sta-
tistical practice for managing non-normally distributed data 
(Field, 2013), analyses involving the number of microhaem-
orrhages were undertaken using bootstrapping, with 2,000 

to group classification. Any disagreement concerning lesion 
identification was resolved through consensus. Prior to any 
consensus discussions occurring, 70% of the sample was 
randomly selected and correlations were calculated to deter-
mine inter-rater reliability of the raters’ decisions. Consis-
tent with previous research (Cheng et al., 2013; Cordonnier 
et al., 2009; Gregoire et al., 2009) inter-rater reliability in the 
current study was excellent (r = .99). Cerebral microhaem-
orrhagic lesions were defined as hypointense foci, less than 
10 mm in diameter (Colbert et al., 2010) on SWI data, that 
were not compatible with vascular flow void (based on sul-
cal location or linear shape), artefacts from adjacent bone or 
sinus, or non-haemorrhagic iron/mineral deposition in basal 
ganglia and other subcortical structures, or as part of a larger 
intra-parenchymal haemorrhagic lesion (≥ 10 mm) (Green-
berg et al., 2009; Nandigam et al., 2009). Sample images 
from selected study participants are provided in Fig. 1.

If there was doubt as to the aetiology of any foci, the 
lesions were not considered to be haemorrhagic lesions 
(Tong et al., 2003). Both raters considered that it was not 
possible to reliably manually count the absolute number 

Fig. 1 Sample Images of Microhaemorrhages Detected on Susceptibil-
ity Weighted Imaging from Selected Study Participants with Multiple 
Microhaemorrhages

Note: Image illustrates multi-focal cerebral microhaemorrhages (white 
arrows) located at the grey-white matter interface and in the deep 
white matter
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The groups were well matched on all demographic and 
injury variables, with the exception of number of days 
between injury and assessment; the mTBI participants were 
assessed approximately 9 weeks after injury, whereas the 
TC participants were assessed, on average, 1 week earlier. 
The primary analyses of interest were between group com-
parisons of SWI-detected microhaemorrhagic lesions and 
within group correlational analyses, neither of which would 
be affected by this group difference. Consequently, to maxi-
mise power, we did not control for this variable. The groups 
contained equivalent proportions of litigants (13–15%), and 
one individual failed the assessment of performance valid-
ity. This individual was in the TC group, and on inspection 
was found to have 9 years of education and a predicted pre-
morbid IQ at the cusp of the Borderline and Low Average 
ranges. It has been suggested that use of Digit Span, as a 
measure of performance validity, is likely to be less accu-
rate in individuals with Borderline levels of general cogni-
tion (Babikian et al., 2006). Consequently, given that the 
individual’s performance validity status was questionable 
and they were also in the TC group, making their cognitive 
performances irrelevant to the primary analyses of interest, 
they were retained in the sample to maximise power.

Between group comparisons of cognitive performance 
and endorsement of post-concussion symptoms are shown 
in Table 2.

The groups did not differ with respect to objective cogni-
tion in any domain. They endorsed equivalent numbers of 
symptoms, and effect sizes for all analyses were small (par-
tial η2 < 0.05) or very small (partial η2 < 0.01).

samples used in the bootstrapping analyses and bias cor-
rected accelerated confidence intervals identified.

Chi-square tests-for-independence and multivari-
ate analyses of variance (MANOVAs) were conducted to 
investigate group differences for demographic and clinical 
variables. MANOVAs were also undertaken to identify any 
group differences in objective cognition and endorsement 
of post-concussion symptoms. Bootstrapped t-tests were 
undertaken to compare groups on the number of micro-
haemorrhages in each group and bootstrapped partial Pear-
son correlations were conducted to investigate whether 
linear relationships existed between cognitive variables and 
the number of microhaemorrhages. As estimates of premor-
bid IQ are more accurate indicators of level of premorbid 
functioning than education (Bright & van der Linde, 2020), 
premorbid IQ was used as the measure of premorbid level 
of function.

Results

The demographic details and injury characteristics for each 
group are presented in Table 1.

Table 1 Demographic and injury variables for mTBI and TC groups
TC 
(n = 31)−
X (SD)

mTBI 
(n = 47)−
X (SD)

p d*

Demographics
Age (yrs) 37.452 

(12.511)
36.192 
(14.092)

0.688 0.095

Gender (% F) 12.901 23.400 0.380 -
Education (years) 11.611 

(4.860)
12.682 
(2.991)

0.822 0.116

PreIQ 105.161 
(9.842)

106.085 
(9.067)

0.672 0.098

Psych Distress 16.655 
(14.482)

15.319 
(10.589)

0.644 0.106

Litigation (%) 12.900 14.890 0.111 -
Injury-related variables (%)
Injury Cause 0.730 -
    Road trauma 74.110 76.609
    Fall 19.391 19.092
    Sport 6.501 4.299
GCS [M(sd)] - 14.513 

(0.690)
LOC (% <5 min) - 87.201
PTA (% <60 min) - 63.800
Inj to Ax (days) 55.971 

(12.670)
62.363 
(10.921)

0.020 0.540

d*: Sensitivity analysis indicated that the MANOVA was sufficiently 
powered to detect a small effect size (d = 0.3), with power = 0.8; PreIQ: 
Predicted Full scale IQ; RPQ: Rivermead post-concussion symptom 
questionnaire; GCS: Glasgow Coma Scale score; LOC: Loss of con-
sciousness; PTA: Post-traumatic amnesia; Inj to Ax: Days between 
injury and assessment

Table 2 Multivariate analysis of variance results for cognitive and 
symptom reporting variables
Variable TC (n = 31)−

X (SD)
mTBI (n = 47)−
X (SD)

p partial 
η2

SDMT
[range]

66.258 
(15.576)
[34.00–
102.00]

66.630 
(13.289)
[46.00–97.00]

0.911 < 0.001

DSpan Total
[range]

27.419 
(6.026)
[16.00–40.00]

28.553 
(4.858)
[19.00–39.00]

0.344 0.012

RAVLT T1-5
[range]

51.000 
(11.573)
[26.00–71.00]

53.064 
(9.126)
[32.00–71.00]

0.378 0.010

TMT B-A
[range]

43.161 
(28.516)
[6.00–104.00]

35.304 
(15.268)
[11.00–96.00]

0.121 0.032

RPQ
[range]

9.774 (9.972)
[0.00–41.00]

9.872 (8.946)
[0.00–32.00]

0.989 < 0.001

SDMT: Symbol Digit Modalities Test: number correct; DSpan Total: 
Digit Span Total; RAVLT T1-5: Rey Auditory Verbal Learning Test, 
sum of trials 1–5; TMT B-A: Trail Making Test B minus Trail Mak-
ing Test A; RPQ: Rivermead Post Concussion Symptoms Question-
naire
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After covarying for age, premorbid level of functioning 
and psychological status, partial correlational analyses were 
conducted between the number of microhaemorrhages and 
the cognitive and symptom reporting variables for the mTBI 
group; these are shown in Table 4.

A significant partial linear correlation between number of 
microhaemorrhages and speed of processing was evident, 
with processing speed slowing as the number of micro-
haemorrhages increased. There were no other significant 
correlations between the number of microhaemorrhages and 
other measures of cognition or the symptom reporting vari-
able. The same pattern of significance was evident for the 
combined mTBI and TC sample, with a significant linear 
association evident between processing speed and number 
of microhaemorrhages (r=-.272, CI: − 0.440 - − 0.077). The 
lack of variance in number of microhaemorrhages in the TC 
group prevented this analysis from being undertaken with 
the TC group alone.

Discussion

This study showed that the mTBI group had greater num-
bers of SWI-detected microhaemorrhagic lesions than 
the TC group and that the number of microhaemorrhagic 

Between group comparison of number of microhaem-
orrhages identified on SWI revealed that the mTBI group 
had significantly more microhaemorrhages ( −

X =2.446, 
SD = 5.853) than the TC group ( −

X =0.129, SD = 0.341) 
[t(46.47) = 2.708, 95% CI: 0.0879–4.154]; this differ-
ence was associated with a medium effect size (Cohen’s 
d = 0.559). Of note, bootstrapping analyses provide 95% 
confidence intervals rather than p values as indicators of sig-
nificance, with only those confidence intervals that do not 
contain 0.00 considered significant (Field, 2013).

Figure 2 shows the distribution of microhaemorrhagic 
lesions within the groups for each individual.

For the TC group, 13% of the sample demonstrated 
microhaemorrhagic lesions, all of whom exhibited only 
a single lesion. In contrast, for the mTBI group, 28% of 
the sample demonstrated lesions, with 70% of those with 
microhaemorrhagic lesions showing more than one lesion 
and 30% of those with lesions demonstrating more than 20 
lesions.

Lobar distribution of microhaemorrhages is presented in 
Table 3.

Lesion distribution primarily involved dorsolateral pre-
frontal cortex, orbitofrontal cortex, temporal pole and basal 
temporal lobe, inferior parietal lobule and the precuneus.

Fig. 2 Number of participants per category of microhaemorrhage numbers (> 0) by group
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mTBI suffer microhaemorrhagic lesions, and that most of 
these individuals suffer four or more lesions (van der Horn 
et al., 2018); this contrasts with the single haemorrhagic 
lesion evident for the small minority of the TC sample that 
showed any lesion.

The present study demonstrated that there is a direct 
association between number of microhaemorrhages and 
speed of processing in the post-acute period after a first-
ever mTBI event. Unlike previous research, the current 
association was found while controlling for psychological 
status, age and premorbid level of functioning, indicating 
that the identified association is independent of these fac-
tors (Massey et al., 2015; Salthouse, 2009; Stern, 2002; 
Terry et al., 2019). In contrast to expectations, there was 
no evidence of a similarly independent linear relationship 
between the number of SWI-detected microhaemorrhages 
and measures of attention, memory, executive function or 
post-concussion symptom reporting in either group. Osten-
sibly, this contrasts earlier findings that have shown rela-
tionships between microhaemorrhages and these variables. 
As previously reported relationships were found without 
controlling for age, premorbid level of functioning and psy-
chological status, however, past studies cannot address the 
question of whether independent associations between these 
variables exist. The current findings indicate that there is 
no evidence of a linear relationship existing between num-
ber of microhaemorrhages and attention, memory, execu-
tive function, or post-concussion symptom reporting that 
is independent of age, psychological status and premorbid 
level of functioning.

The relationship between number of microhaemorrhages 
and processing speed, but not other domains of cognition, 
may be explained by the repeated finding that post-acute 
changes in processing speed after mTBI have larger effect 
sizes than changes in other cognitive domains (Frencham 
et al., 2005). Therefore, any relationship between lesion 

lesions was linearly associated with cognitive function in 
the head injured group. Specifically, the presence of more 
microhaemorrhagic lesions was associated with slower pro-
cessing speed. Location of microhaemorrhagic lesions was 
primarily in the frontal and temporal lobes, which is consis-
tent with previous findings in individuals with mTBI (Park 
et al., 2009).

The current finding of greater numbers of SWI-related 
microhaemorrhagic lesions in those who have suffered a 
mTBI, relative to a control group, is consistent with recent 
literature (Tate et al., 2017; Trifan et al., 2017; van der Horn 
et al., 2018). The present study also replicated a previous 
finding, which showed that a minority of individuals with 

Table 3 Lobar distribution of microhaemorrhage count by group
 TC 

(n = 31)
mTBI 
(n = 47)

Lobar Location* Microhaemor-
rhage Count

Frontal lobe 4 74
Frontal pole 0 11
Orbitofrontal 
gyrus

0 23

Inferior frontal 
gyrus (Pars 
orbitalis)

1 22

Superior frontal 
gyrus (prefrontal)

3 6

Middle frontal 
gyrus (prefrontal)

0 9

Precentral gyrus 0 3
Parietal lobe 0 10

Superior parietal 
lobule

0 1

Inferior parietal 
lobule (SMG)

0 2

Inferior parietal 
lobule (AG)

0 1

Precuneus 0 5
Posterior cingu-
late cortex

0 1

Temporal lobe 0 21
Temporal pole 0 11
Superior tempo-
ral gyrus

0 1

Middle temporal 
gyrus

0 4

Basal temporal 
(ITG, FG and 
PHG)

0 5

Insular lobe 0 3
Corpus callosum (genu) 0 2
Cerebellum 0 2
*Microhaemorrhages were primarily located at the grey matter-white 
matter junction, and in the deep white matter. A microhaemorrhage 
count of 20 was used to represent cases who had great than 20 lesion 
counts; AG: angular gyrus; FG: fusiform gyrus; ITG: inferior tempo-
ral gyrus; PHG: parahippocampal gyrus; SMG: supramarginal gyrus

Table 4 Partial correlations between number of microhaemorrhages 
and cognitive and symptom reporting variables after controlling for 
age, premorbid level of functioning and psychological status in the 
mTBI group
Variable SDMT r

95% CI
DSpan 
Total r
95% CI

RAVLT 
T1-5 r
95% CI

TMT 
B-A r
95% CI

RPQ r
95% 
CI

No. microhaem − 0.375
− 0.580 
- − 0.154

0.196
− 0.127 
− 0.551

0.057
− 0.187 
− 0.405

0.048
− 0.197 
− 0.280

− 0.160
− 0.416 
− 0.263

SDMT: Symbol Digit Modalities Test: number correct; DSpan Total: 
Digit Span Total; RAVLT T1-5: Rey Auditory Verbal Learning Test, 
sum of trials 1–5; TMT B-A: Trail Making Test B minus Trail Making 
Test A; RPQ: Rivermead Post Concussion Symptoms Questionnaire; 
95% CI: 95% confidence intervals are provided in bootstrapping 
analyses, rather than p-values, with confidence intervals that do not 
contain 0.00 denoting a significant finding; No. microhaem: Number 
of microhaemorrhages; Bold: significant finding
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examination of whether there was a predictive relationship 
between microhaemorrhagic lesion numbers and process-
ing speed performance. Another limitation associated with 
small sample sizes is the increased risk of making Type II 
errors. Thus, it is possible that the current study did not iden-
tify group differences in cognition due to the modest sample 
size. Examining the effect sizes of the between group analy-
ses indicates this is relatively unlikely, however, as all effect 
sizes of non-significant group comparisons were very small. 
The sample size was considered adequate for bootstrapping 
analyses (Chernick, 2008), indicating that the partial cor-
relation analyses were unlikely significantly influenced by 
the modest sample size. A final potential limitation of this 
study is the possibility that individuals may have suffered 
pre-traumatic microbleeds, unrelated to the trauma event. 
Given that the TC and mTBI groups were equivalently pre-
morbidly healthy, however, there is no reason to believe that 
the number of possible pre-traumatic bleeds would have 
differed between the groups. Consequently, this possibility 
does not affect the implications that can be drawn from (a) 
the reported group difference in microhaemorrhagic count 
and (b) the relationship between processing speed and 
microhaemorrhagic count.

Conclusions

In conclusion, this study indicates that a single mTBI seems 
to cause multiple microhaemorrhagic lesions for a minor-
ity of premorbidly healthy adults. Further, for this minority, 
there is a significantly increased likelihood of experienc-
ing progressively slower processing speed as the number 
of lesions increases, even at 9 weeks post-injury. While 
it is not possible to determine if the relationship between 
number of lesions and processing speed is causal from the 
current study, the clinical implications of these findings are 
nevertheless important. Specifically, they raise the question 
of whether an individual’s mTBI-related microhaemor-
rhagic lesion load might be an influential factor in the cog-
nitive recovery trajectory after mTBI for some individuals. 
It is possible that higher lesion load could be associated 
with slower processing speed and therefore slower cogni-
tive recovery in a minority of individuals with mTBI. Thus, 
these findings highlight a possible pathological mechanism 
that might be contributing to variations in cognitive recov-
ery after a single mTBI event in premorbidly healthy adults. 
Further research will be needed to answer this clinically 
important question.
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